
International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
October 07-10 2003, Split, Dubrovnik (Croatia), Ancona, Venice (Italy)

Using UML for the Design of Communication Protocols: The TCP Case Study

K. Thramboulidis, A. Mikroyannidis
Electrical & Computer Engineering

University of Patras, Greece
E-mail: thrambo@ee.upatras.gr, mikroyan@softeng.org

Abstract: Object technology has been widely adopted in many
application domains and the Unified Modeling Language (UML)
has become the new industry standard for modeling software-
intensive systems. UML is currently used for modeling of just
about any type of applications, running on any type and
combination of hardware, operating system, programming
language and network. However, protocol design is still based
on traditional methodologies. In the context of this paper, we
present an approach that utilizes object technology and the
UML notation for the development of communication protocols.
A methodology is presented and extensions to the UML notation
are proposed to address the peculiarities of protocol design. The
construction of a TCP protocol for RTLinux was selected as an
example to demonstrate the methodology. Design and
implementation issues are presented and the resulting system is
evaluated.

1. INTRODUCTION

 We have under development an Object-Oriented (OO)
framework to implement the IEC61499 proposed architecture
for open, interoperable and re-configurable distributed
control application [2]. For the implementation of the
CORFU interworking unit, which is used to interconnect the
different types of field buses to a Fast switched-Ethernet, we
selected RTLinux and we defined a modular architecture to
satisfy the real-time constrains imposed by this kind of
applications. The Industrial Process Control Protocol (IPCP)
has been defined to satisfy real-time and non real-time
requirements [3]. For the IPCP protocol to support
commissioning, configuration and on-line re-configuration of
control applications, TCP functionality was required. RTNet
[4] was the only protocol stack that was found for RTLinux.
It provides direct access to IP-based networking from
RTLinux real-time code. RTNet’s implementation is based
on the standard Linux networking source code, with the
necessary changes to make it real-time. RTNet implements
the IP, ARP, UDP, and ICMP protocols over Ethernet but
there is no implementation for the TCP protocol.

In [5] we have reported the use of RTNet to implement a
prototype for the interconnection of a Profibus fieldbus with
a Lonworks fieldbus. To satisfy the requirement for TCP
functionality a first draft implementation of TCP, based on
TCP Lean [6] was given. This TCP implementation was
embedded in the RTNet module. In this paper we present an
OO development for the TCP protocol layer that was carried

out in order to provide a more robust, modular, expandable
and layered TCP protocol stack for RTLinux.

Having applied the OO approach and the UML notation
successfully in many application domains, we decided to
exploit the advantages of this approach in the communication
protocol domain. A survey on previous work that was carried
out, highlighted the absence of significant progress in this
direction. This is why we decided to apply our OO
methodology. However, applying this methodology in this
application domain, we found that it has to be adapted to
address the peculiarities of protocol design. A number of
extensions were introduced to satisfy the requirements
imposed by communication protocol software.

The remainder of this paper is organized as follows:
Section 2 briefly presents the main directions in protocol
design. Section 3 outlines our modified methodology that can
be used for the design of communication protocols. The
design of a TCP layer for RTLinux is presented and
implementation details are discussed in section 4. Finally, the
proposed approach is discussed with more emphasis on
performance evaluation and the paper is concluded.

2. PROTOCOL DESIGN

 The current industrial practices in communication
protocol design and implementation are unsatisfactory. There
is a wide gap between state-of-the-art in Software
Engineering and state of practice in communication protocols
design and implementation. The development of
communication protocols is still mainly based on the
traditional procedural paradigm. The methodologies used for
the development of protocols can be grouped in three
categories. According to the first category that follows the
procedural approach, a structured design methodology and a
procedural language that is mainly C, are used for the
development of protocol software. Even though this
approach results in efficient implementations, reusability and
flexibility are rather poor. The second category uses a formal
description technique to create the protocol’s specification,
which is then translated into program code. SDL [7], Estell
[8] and Lotos [9] are examples of specifications used, with
SDL being the most widely adopted. Reusability is absent in
the design phase and very limited in the implementation
phase. The third category, which is continuously gaining
ground, includes methodologies that are based on the OO

mailto:thrambo@ee.upatras.gr
mailto:mikroyan@softeng.org

paradigm. The OO approach results in implementations that
exhibit increased modularity, flexibility, extensibility and
reusability. Traditional tools used in protocol development,
such as Conduits, have been expanded to exploit the benefits
of the OO approach [10]. Successful results have been
reported by researchers applying methodologies of this
category. UML has been used by Sekaran for the analysis
and design of L2CAP (Logical Link Control and Adaptation
Layer Protocol) of the Bluetooth architecture [11]. Jaragh
and Saleh propose the use of UML for designing behavioral,
structural and architectural models covering both the static
and dynamic aspects of protocols [12]. However, UML lacks
many of the semantics needed for protocol engineering.
Towards this direction is the work of Pärssinen et al. [13],
which defines the Graphical Protocol Description Language
(GPDL) as an extension of UML. Pärssinen et al. have also
developed a tool aiming to translate the GPDL models into
SDL models.

Figure 1 - First level OID of the “active open” use case.

 This first-level OID is next expanded to a lower level
abstraction OID, which we call detailed-OID. The objects
that are required to compose the system for the described
behavior to be provided should be identified and their
collaboration defined. Coupling and cohesion are among the
parameters that help the designer to identify these objects but
unfortunately there are no well-defined rules to proceed. The
designer’s skills are at the moment the most important
parameter for an effective design to be achieved. However,
the proper definition of specific design patterns from the
protocol domain should increase productivity in the design of
communication protocols and speed up the development
process. The work of Pärssinen and Turunen[15] address this
issue. We are currently working to this direction too. Fig. 2
depicts the detailed OID of the “active open” use case. A
thorough reference to this OID is given in the next section
which deals with the TCP case study.

3. APPLIED METHODOLOGY

 For the development of the TCP protocol stack we
decided to utilize our methodology that has been already
successfully applied in other application domains. However,
the methodology was tailored to satisfy the peculiarities of
protocol design. Furthermore, some extensions to the UML
notation are proposed to better handle the communication
and synchronization requirements in the protocol
development domain. In this section, we briefly refer to the
outline of the applied methodology giving emphasis on the
modifications imposed by the nature of protocol software.

For the development of the analysis model, the use case
driven approach was adopted to delimit the system and
define its functionality. Two types of models mainly
constitute the analysis model of the system. The use case
model and the problem domain logical view. In order to
construct the use case model, the construct of actor is used to
represent the roles that software entities play interacting with
the protocol. Each actor may perform a number of use cases.
In order to increase reusability from this early phase, we
develop a use case diagram that captures associations, such
as adds and extends, between the use cases. For the
description of each use case the format proposed by
Rumbaugh was adopted. However, we consider each use
case in at least two levels of abstraction. The first-level
description considers the interaction of the system as a
whole, with the entities of its environment. A more formal
representation of this description is obtained using a
corresponding first-level Object-Interaction Diagram (OID)
[14]. In this first-level OID, the protocol under development
is represented as an entity and its interactions with external
systems are captured. Fig. 1 illustrates the first level OID for
the “active open” use case of the TCP protocol, which was
considered as case study in the context of this work.

Figure 2 - Detailed OID of the “active open” use case.

The problem domain model is composed of class diagrams
that capture the key abstractions of the problem domain and
constitute the logical view of the system. It represents as
objects, entities or concepts from the problem domain for
which the system should handle information. These objects
are later used in the construction of system’s OIDs. A data
driven approach results in the construction of the problem
domain model before the use case model. However, a hybrid
approach that involves the construction of the use case model
in parallel with the construction of the problem domain
model seems to be the best choice.

To proceed with the design of the system, we refine each
OID to evolve to a more detailed OID that can be
implemented with the selected implementation environment.
During analysis, every object of the system is considered as
active. However, this is not possible for the implementation.
Concurrency and synchronization must be considered and the
communication and synchronization mechanisms provided
by the implementation environment should be properly
utilized for an optimum implementation to be accomplished.

 Three active objects have been shown: the Client instance,
the IP instance and the InputSegmentHandler, which
represents the TCP’s input thread. The arrival of a segment
is passed as an asynchronous message from IP to the
InputSegmentHandler. Synchronization between the Client
and the InputSegmentHandler threads is obtained using an
instance of Timer. The client thread which sets the Timer
instance, is suspended (dashed lines) until a stop signal
arrives, or there is a timeout. The suspended thread is then
woken-up and returns to normal execution. Nevertheless, the UML standard does not provide the

required constructs to capture these design issues. The
activity diagrams can not be used, since they describe the
execution of a single thread, which can fork and join. In
contrast, our aim is to show the synchronization between
active objects that interact in the context of a use case. Moore
and McLaughlin have proposed a concurrency or tasking
diagram, which has been based on the collaboration
diagram[16][17]. This diagram depicts the tasks and the way
they interact through various mechanisms (i.e. fifos,
mailboxes). This approach is not applicable in our case, so
we proposed the required extensions to the UML notation to
capture the following semantics:

4. THE TCP CASE STUDY

The Rational Rose general-purpose CASE tool [1] was
used for the design of the TCP protocol for RTLinux. The
use case model is presented in fig. 4. Each use case was
described and a first-level OID as well as at least one detail-
OID was constructed for it.

a) Concurrency. In order to be able to represent in an OID
more than one threads of control, we have introduced the
dashed line notation in the body of an object. When a thread
of control is suspended or blocked, its body lines are
converted to dashed. Automatic conversion can be obtained
based on the semantics of the posted and received messages.
To simplify the diagram, we decided to allow a passive
object to be shown in the OID more than once. The con
object for example in fig. 3 is executed by both threads i.e.
the Client instance thread and the InputSegmentHandler
instance thread. This can not be shown with the today’s UML
CASE tools.

Figure 4 - The use case model of TCP.

Fig. 2 shows the detailed OID of the “active open” use
case. The main responsibility of the ConnectionHandler
object is to handle the connection objects. It is responsible
for creating and destroying connection instances, as well as
finding the connection instance that has a set of specified
characteristics.

b) Synchronization. Operations with special semantics like
set-timer(), wake-up(), wait() and notify() are defined and
used to support synchronization between threads of
execution.
 In fig. 3, which shows a design level OID of the “active
open” use case of TCP, the above extensions are used to
represent concurrency and synchronization in the OID. The problem domain model was constructed in parallel

with the construction of detailed OIDs. Fig. 5 shows a part of
this model of TCP. The Connection class, which is the
heart of this model, has as data members all the information
that in traditional TCP implementations is stored in a TCB.
Method specifications are given according to the instance
responsibilities. Method takeSegment() for example,
processes the incoming from IP segments; it checks the
segment’s sequence number, acknowledgement number and
flags, then copies any data to the connection’s input buffer
and, if necessary, it sends back an ACK segment.

 The analysis class diagram was refined to produce the
design class diagram. Two active objects were identified: a)
the InputSegmentHandler for handling incoming from IP
segments and b) the OutputSegmentHandler for managing

Figure 3 - Design level OID of the “active open” use case.

the transmission of segments. Even more, each actor
constitutes an active object. Application

OOTCP

Release
skbuf

Send TPDUs Register input fifo Receive TPDUs

RT-Interface

Receive TPDUs Send TPDUs Register receiver function

RTNet

Network Figure 5 - Analysis class diagram of TCP (partial).
Figure 6 - TCP’s interface with IP

 The implemented TCP layer, which was named OOTCP
(Object-Oriented TCP), was developed for version 3.1 of the
RTLinux kernel. For its implementation, the C++ language
was selected. Compilers producing code that can be easily
imported into the RTLinux kernel are available. Thread
communication was implemented by real time fifos (rtfifos).
For the protection of shared resources we have used mutexes
(type pthread_mutex_t). All Connection instances are
created when the TCP module is loaded into the kernel, since
dynamic allocation is not supported. The operator new and
the malloc() function are allowed to be used in the
RTLinux kernel only in the initialization of a module
(function init_module()), since they do not satisfy real-
time constraints. All mutexes and rtfifos must also be
initialized (functions pthread_mutex_init() and
rtf_create()) by the init_module() function.

5. DISCUSION - EVALUATION

The development of a protocol using the OO approach
and the UML notation was successful. The resulting protocol
implementation: a) is easy to be understood; the detailed
design diagrams hide the time consuming, low level
implementation details and b) is expandable; new
functionality was added first in the design models and it is
then translated to code. However, since the most important
issue in protocol implementation is the performance, we
created a testbed in order to measure, under certain
conditions, the performance of the developed OOTCP/RTNet
protocol stack. We performed the same measurements for
the TCP/IP stack of Linux and used them as a yardstick. The
main motivation of this evaluation was to verify the smooth
operation of our protocol stack under heavy load. It must be
clarified that the design of OOTCP and the subsequent
implementation has not been optimized to increase
performance.

 One serious problem was that the C++ code of OOTCP
could not be compiled when we included several Linux
header files, i.e. <linux/skbuff.h>. These headers are
used by RTNet and define fundamental structs, like skbuf,
which is a buffer used by Linux to store the contents of a
datagram [18]. In order to overcome this problem, we created
RT-Interface, a module written in C, to handle the
interconnection with RTNet. Fig. 6 illustrates the architecture
we adopted. RT-Interface has no threads of its own; it only
provides a set of functions to be called by RTNet and
OOTCP. When RT-Interface is loaded, it registers one of its
functions to RTNet in order for RTNet to call this function
every time a TPDU arrives. When this function is called, RT-
Interface passes the address of the TPDU to OOTCP through
an rtfifo. This fifo is registered to RT-Interface by OOTCP,
when the latter is loaded. An rtfifo handler is used to wake up
the OOTCP’s input thread every time RT-Interface writes
into the fifo. When OOTCP has finished processing a
received TPDU, the skbuf containing it has to be released in
order to be reused. This is done by RT-Interface, since
OOTCP can access only the skbuf’s data, that is the TPDU.
Finally, upon sending a TPDU, the corresponding function of
RTNet is called through RT-Interface.

The performance evaluation of a protocol stack involves
measuring several parameters. Zanella et al. [19] for the
performance evaluation of TCP Westwood and Reno used
simulations as well as the application of the implementations’
analytical models. They measured the TCP’s throughput with
respect to variations of the error probability, buffer size,
bandwidth and round trip time (RTT). Perkins and Hughes
[20] have investigated the performance of TCP in mobile ad
hoc networks (MANETs) by evaluating the impact of path
length, node mobility and routing on the throughput of TCP.
Pentikousis [21] has tested TCP Tahoe, Reno and NewReno
under random and burst errors as well as combinations of
these two categories. He simulated these errors during the
transfer of a 5MB file between two hosts over a 10Mbps
network and measured the delays inserted.

Our tests were conducted between two dedicated hosts,
directly interconnected via crossed Ethernet cable of
100Mbps. One host was running the server application,

which was using the TCP/IP stack of MSWindows. The
client application on the other host was, in the first case, an
RTLinux application utilizing the services of
OOTCP/RTNet, and a Linux application using the services of
Linux TCP/IP in the second case. Once the client established
a connection with the server, it received a 5MB file and then
sent it back. The results of the performance test are given in
Table 1. The receiving and sending time is the time taken for
each protocol stack to receive and send the file respectively.
The TCP throughput [22] is calculated as:

BytesSent * 8 / Sending time
It can be seen that the results are almost identical for both

stacks, even though an overhead was expected from the OO
implementation.

Table 1 - Performance evaluation results
 Linux TCP/IP OOTCP/RTNet
Bytes received 5242900 5242900
Receiving time (sec) 1.181 1.201
Bytes sent 5242900 5242900
Sending time (sec) 0.821 0.882
TCP throughput (Mbps) 51 47.5
Total time (sec) 2.002 2.083

6. CONCLUSIONS

In this paper, an OO methodology to facilitate the

development of communication protocols was presented.
This methodology is a tailoring of our methodology that we
have used successfully for many years in many application
domains. The methodology exploits the OO approach and the
widely accepted UML notation. In our attempt to address the
design issues of protocol engineering, a number of extensions
to the UML notation were proposed. The methodology was
utilized for the development of a TCP protocol stack for the
RTLinux RTOS. The experiment was successful. The
resulting implementation not only has enhanced readability,
modularity, and expandability but also presents performance
characteristics comparable with those of the corresponding
protocol stack of Linux, even though no extra optimization
techniques were used to enhance performance.

However, better results are expected using the profile of
UML for real-time modeling. Working in this direction it will
become clear if a specific UML profile for communication
protocols should be defined. Such a profile will give the
modelers: a) access to common model elements and b)
terminology from the communication protocol domain. This
is the first step towards a model driven approach for the
development of protocol software.

REFERENCES

[1] Rational home page, http://www.rational.com

[2] K. Thramboulidis, C. Tranoris, “Developing a CASE
tool for Distributed Control Applications", The International
Journal of Advanced Manufacturing Technology, Springer-
Verlag (forthcoming).
[3] Thramboulidis, K. “Development of Distributed
Industrial Control Applications: The CORFU Framework”,
4th IEEE International WFCS, Sweden, August 2002.
[4] Lineo's OpenSource Development Repository Project
Page, http://opensource.lineo.com/projects.html
[5] K. Thramboulidis, P. Parthimos, G. Doukas, “Using
RTLinux to Interconnect Field Buses: The Profibus Case
Study”, ICMEN 2002, October, Greece.
[6] Jeremy Bentham, “TCP/IP Lean, Web Servers for
Embedded Systems”, CMP books 2000.
[7] Jan Ellsberger et al, “SDL: Formal Object-Oriented
Language for Communicating Systems”, Prentice Hall 97.
[8] Estelle, ISO International Standard IS8807, July 1989.
[9] Lotos, ISO International Standard IS8807, Feb. 1989.
[10] H. Huni, R. Johnson, R. Engel, “A Framework for
Network Protocol Software”, 10th OOPLSA, October 95.
[11] Sekaran K. C., “Development of a link layer protocol
using UML”, Proceedings of IEEE International Conference
on Computer Networks and Mobile Computing, October
2001.
[12] Jaragh M., Saleh, K. A., “Protocols modeling using the
Unified Modeling Language”, Proceedings of IEEE
TENCON, August 2001.
[13] J. Pärssinen, N. Knorring, J. Heinonen, M. Turunen,
“UML for Protocol Engineering–Extensions and
Experiences”, TOOLS 33, June 05 - 08, 2000, St. Malo,
France.
[14] Thrampoulidis, K. K. Agavanakis, “Introducing Object
Interaction Diagrams: A technique for A&D”, Journal of
Object-Oriented Programming (JOOP), June 1995.
[15] J. Pärssinen, M. Turunen, “Patterns for Protocol System
Architecture”, PLoP2000, August 13-16, Illinois 2000.
[16] Alan Moore, “Extending UML to Real-Time Systems”,
Embedded Developers Journal, March 2001.
[17] McLaughlin, M. Alan Moore, “Real-Time Extensions to
UML”, Dr. Dobb's Journal December 1998.
[18] Jon Crowcroft, Iain Philips, “TCP/IP and Linux
protocol implementation”, John Willey, 2002.
[19] A. Zanella, G. Procissi, M. Gerla, M. Sanadidi, “TCP
Westwood: Analytic Model and Performance Evaluation”,
Globecom 2001, November 2001, San Antonio, Texas.
[20] D. Perkins, H. Hughes, “Investigating the performance
of TCP in mobile ad hoc networks”, Computer
Communications, Vol. 25, Issues 11-12, July 2002.
[21] K. Pentikousis, “Error Modeling for TCP Performance
Evaluation”, Master’s Thesis, State Univ. of New York, May
2000.
[22] Andrew S. Tanenbaum “Computer Networks”, 4th
edition, Prentice Hall 2002.

http://www.rational.com/
http://opensource.lineo.com/projects.html

	1. INTRODUCTION

